| | | | | Regis | ter Num | ber | 9 | 1 | 0 | 0 | | STATE OF | | - | |--|--|---|--|--|--|--|--|---------------------|--|----------------------------------|--------|---|-------------------------|---------------------------------------| | | , | VELA | LAR COLI | LEGE OF E | - | | | VD T | C | S | R | 0 | 111 | 1 | | | | | | THE RESERVE AND ADDRESS OF THE PARTY | | | | | | | | | - | | | | Con | tinuou | s Assessmen | Institution, | Annate | The same of sa | - | | - | - | | | | | | Programi | The state of s | _ | CSE & | Semester | . 16 | - | P S | | 2 | | - | ons - 2018 v4 | | | | | | В.7 | Tech-IT | | | Max. | Ma | rks: | 50 | Dura | tion | 1 | .5 Hrs | | | Course C | | | 21CST51 8 | & Computer ! | Network | S | | | | | | | | | | | 21CS5A
21IT5A | | Date: | 04.09.2023 | (FN) | | | Tin | ne: 11 | .00 an | to 12 | 2.30 | pm | | | - | ledge | | K1- | Rememberin | ıg | K3 - / | Appl | ving | | k | (5 – E | valu | ating | | | Levels | s(KL) | | K2 - I | VO VI I | | | | | - | K5 – Evaluating
K6 – Creating | | | | | | | | | | Davit A | - 10x2 | - 20 M | - 1 | 11111 | | | | | | | | 1. Lis | t three o | criteria | necessary f | for an effecti | | | агк | | | | | | COI | K1 | | | | | ernet from in | | ve netw | OIK. | | | | | | | COI | K2 | | | | | | that requires | central | control | ler. | Instif | v vour | answ | or. | | COI | K1 | | | | | | P/IP models | | | | | | unswi | | | COI | K2 | | | | | | real time ex | | oring i | OIII | cucii | other. | | | | COI | KZ | | | | | | with its types | | | | | | | | | CO2 | K | | | | | | uivalent of th | | ving Eth | nern | et ado | lress. | | | | CO2 | K | | | | | | 10 0000010 | | | | | | | | | | | | | | | | r receives 1: | 510 byte | es of da | ata f | rom t | the un | ner la | ver. C | an | CO2 | K | | the | data h | | | | | | | | | | | | | | | | | | | one frame? I | f not, ca | alculate | | | | | | | | | | ser | nd? Wha | at is th | e size of the | data in each | f not, can frame? | alculate | | | | | | | CO2 | K | | 9. Wi | nd? Wha | at is th | e size of the
concept of I | e data in each
EEE standar | f not, can frame?
d 802.5. | alculate | hov | v mai | ny fran | nes ne | ed to | be | CO2 | | | 9. Wr
10. Illu | nd? Wha
rite about
ustrate l | at is the
ut the
Expose | ne size of the
concept of I
ed terminal | data in each | f not, can frame? d 802.5. | alculate | hov | v mai | ny fran | nes ne | ed to | be | CO2
CO2 | | | 9. Wr
10. Illu | nd? Wha
rite about
ustrate l | at is the
ut the
Expose | e size of the
concept of I | e data in each
EEE standard
problem wit | f not, can frame? d 802.5. | alculate
diagram | hov
and | v mai | ny fran | nes ne | ed to | be is | | K | | 9. Wr
10. Illu
use | nd? Wha
rite about
ustrate l | at is the
ut the
Expose
lve thi | e size of the
concept of I
ed terminal
is problem. | e data in each
EEE standar
problem wit
Part B | f not, can frame? d 802.5. th neat of the control o | diagram | how
and | v man | e which | h algo | ed to | be is rks | CO2 | K | | 9. Wr
10. Illu
use | nd? Wha
rite about
ustrate I
ed to so | at is the
ut the
Expose
Ive thi | ne size of the
concept of I
ed terminal
is problem. | e data in each
EEE standard
problem with
Part B | of not, can frame? d 802.5. th neat of the second s | diagram = 30 M | how
and | v man | e which | h algo | ed to | be is | CO2 | K:
K:
K | | 9. Wr
10. Illu
uso | nd? What
rite about
strate led to so | Expose
lve thi | e size of the concept of I ed terminal is problem. | e data in each EEE standard problem with Part B (e) e OSI netwo | of not, can frame? d 802.5. the neat of a 15x2 Question work are neat diag | diagram = 30 M chitectugram. | how
and | v man | ny fran | h algo | ed to | be is rks | CO2
CO
CO1 | K
K | | 9. Wr
10. Illu
uso | nd? Wha
rite abou
ustrate I
ed to so | Expose
lve thi | e size of the concept of I ed terminal is problem. | e data in each
EEE standard
problem with
Part B | of not, can frame? d 802.5. the neat of a 15x2 Question work are neat diagon its type. | alculate
diagram
= 30 M
chitectu
gram. | how
and | v man | ny fran | h algo | ed to | be is rks | CO2 | K
K | | 9. Wr
10. Illu
usc
No. | nd? What rite about a strate I sed to so (ii) | exposed live this Dem function Defin | ne size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin | e data in each EEE standare problem wit Part B (e OSI netwood layer with reach and mention | of not, can frame? d 802.5. the neat of a 15x2 Question work are neat diagon its type OI | alculate
diagram
= 30 M
chitectu
gram.
pes. | hove hove and and | v man | ny fran | h algo | Ma | be is rks | CO2
CO1
CO1 | K
K
K | | 9. Wr
10. Illu
use | nd? What rite about the dots of o | at is the ut the Expose live this Dem funct Defin | ne size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail | e data in each EEE standard problem with Part B e OSI network layer with reg and mention | of not, can frame? d 802.5. ch neat of the neat diagon its type of the neat | alculate diagram = 30 M chitecte gram. pes. R col suit | and lark | d state | e whice | th algo | Ma | be is rks 0 | CO2 CO1 CO1 CO1 | K
K
K | | 9. Wr
10. Illu
usc
No.
11. (a) | nd? What rite about a strate I ded to so (ii) | at is the ut the Expose live this Dem funct Defin | ne size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail | e data in each EEE standare problem wit Part B (e OSI netwood layer with reach and mention | of not, can frame? d 802.5. ch neat of the neat diagon its type of the neat | alculate diagram = 30 M chitecte gram. pes. R col suit | and lark | d state | e whice | th algo | Ma | be is rks | CO2
CO1
CO1 | K
K
K | | 9. Wr
10. Illuuse
No.
11. (a) | nd? What rite about ustrate led to so (ii) (ii) (iii) | at is the ut the Expose live this Dem funct Defin Expl | e size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different | e data in each EEE standard problem with Part B (e OSI network layer with rung and mention about TCP/It types of training a standard problem is the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem is the standard problem in the standard problem in the standard problem in the standard problem is the standard problem in s | of not, can frame? d 802.5. th neat of the neat of the neat of the neat of the neat diagon its type di | alculate diagram = 30 M chitecte gram. pes. R col suit | hove hove a name hove hove hove hove hove hove hove hov | d state | e whice | th algo | Ma | be is rks 0 | CO2 CO1 CO1 CO1 | K
K
K
K | | 9. Wr
10. Illu
usc
No.
11. (a) | nd? What rite about ustrate led to so (ii) (ii) (iii) | at is the ut the Expose live this Dem funct Defin Expl. Disc | e size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different trate the step wing: | e data in each EEE standard problem with Part B e OSI netword layer with reg and mention about TCP/It types of transport involved in the problem of the problem in the problem of pro | if not, can frame? d 802.5. the neat of the seat diagon its type of the protoconsmission CRC of the seat diagon its type of the protoconsmission CRC of the seat diagon its type of the protoconsmission the transmission that the seat diagonal transmission that the seat diagonal transmission tran | alculate diagram = 30 M chitectu gram. pes. R col suit on med | how
handark
Mark
ure
e. | d state and ith ex | e whice explain | th algorian the | Ma 1 | be is is of the second | CO2 CO1 CO1 CO1 CO1 | K
K
K
K | | 9. Wr
10. Illuuse
No.
11. (a) | nd? What rite about ustrate led to so (ii) (ii) (iii) | Dem funct Defin Expl Disc Illust follo | e size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different trate the stepwing: | e data in each EEE standard problem with Part B e OSI netword layer with reg and mention about TCP/It types of training involved in the positive of posit | if not, can frame? d 802.5. the neat of seat diagon its type of the constraints co | alculate diagram = 30 M chitectu gram. pes. R col suit on med | how
handark
Mark
ure
e.
ia w | ith ex | e whice explain | th algorian the | Ma 1 | be is is of the second | CO2 CO1 CO1 CO1 CO1 | K
K
K
K | | 9. Wr
10. Illuuse
No.
11. (a) | nd? What rite about ustrate led to so (ii) (ii) (iii) | Dem funct Defin Expl Disc Illust follo A bit meth | ne size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different trate the step wing: t stream 110 nod. The general stream 110 nod. The general stream 110 nod. | e data in each EEE standard problem with Part B (e. OSI network layer with rung and mention about TCP/It types of training involved in the content of co | if not, can frame? d 802.5. the neat of section work are neat diagon its type of the contraction cont | alculate diagram = 30 M chitectu gram. pes. R col suit on med | how
handark
Mark
ure
e.
ia w | ith ex | e whice explain | th algorian the | Ma 1 | be is is of the second | CO2 CO1 CO1 CO1 CO1 | K
K
K
K | | 9. Wr
10. Illuuse
No.
11. (a) | nd? What rite about the ab | Dem funct Defin Expl Disc Illust follo A bit meth | e size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different trate the step wing: t stream 110 and. The general point will be string will be | e data in each EEE standard problem with Part B (construction of the construction t | of not, can frame? d 802.5. the neat of section work are neat diagon its type of the contract | alculate diagram = 30 M chitectu gram. pes. R col suit on med comput itted us is x ⁴ +x | and fark | ith extended the st | e whice explain ample comp | th algorian the | Ma 1 | be is is rks 0 5 8 7 8 | CO2 CO1 CO1 CO1 CO2 | K
K
K
K
K | | 9. Wr
10. Illuuse
No.
11. (a) | nd? What rite about ustrate led to so (ii) (ii) (iii) | Dem funct Defin Expl Disc Illust follo A bit meth bit st Expl | ne size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different trate the step wing: t stream 110 nod. The genting will be ain sliding will be | e data in each EEE standard problem with Part B (e. OSI network layer with rung and mention about TCP/It types of training involved in the content of co | of not, can frame? d 802.5. the neat of section work are neat diagon its type of the contract | alculate diagram = 30 M chitectu gram. pes. R col suit on med comput itted us is x ⁴ +x | and fark | ith extended the st | e whice explain ample comp | th algorian the | Ma 1 | be is is of the second | CO2 CO1 CO1 CO1 CO1 | K
K
K
K
K | | 9. Wr
10. Illuuse
No.
11. (a) | nd? What rite about the ab | Dem funct Defin Expl Disc Illust follo A bit meth | ne size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different trate the step wing: t stream 110 nod. The genting will be ain sliding will be | e data in each EEE standard problem with Part B (construction of the construction t | of not, can frame? d 802.5. the neat of section work are neat diagon its type of the contract | alculate diagram = 30 N n chitectu gram. pes. R col suit on med comput itted us is x ⁴ +x Mention | and fark | ith extended the st | e whice explain ample comp | th algorian the | Ma 1 | be is is rks 0 5 8 7 8 | CO2 CO1 CO1 CO1 CO2 | K K K K K K K K K K K K K K K K K K K | | 9. Wi
10. Illust
No.
11. (a) | nd? What rite about ustrate led to so (ii) (ii) (iii) (iii) | Dem funct Defin Explorer Discount Illust follo A bit meth bit st Expl types | ne size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different trate the step wing: t stream 110 and The general stream 110 and The general stream sliding is. | e data in each EEE standard problem with Part B (e. OSI network layer with regard mention about TCP/It types of transport transmitted window problem of the detection in det | if not, can frame? d 802.5. the neat of 8 - 15x2 Question work are neat diagon its type OI P protoconsmission CRC of transminomial in transminomial in the cool? Monethods | alculate diagram = 30 M rehitects gram. pes. R col suit on med comput itted us is x ⁴ +x Mention R with ar | and fark fa | ith extrate | e whice explain ample complete tandar is the | th the | Ma 1 | be is is rks 0 5 8 7 8 | CO2 CO1 CO1 CO1 CO2 | K K K K K K K K K K K K K K K K K K K | | 9. Wr
10. Illuuse
No.
11. (a) | nd? What rite about ustrate led to so (ii) (ii) (iii) (iii) | Dem funct Defin Explorer Discount Illust follo A bit meth bit st Expl types | ne size of the concept of I ed terminal is problem. onstrate the tions of each ne addressin ain in detail uss different trate the step wing: t stream 110 and The general stream 110 and The general stream sliding is. | e data in each EEE standard problem with Part B (construction of the construction t | if not, can frame? d 802.5. the neat of 8 - 15x2 Question work are neat diagon its type OI P protoconsmission CRC of transminomial in transminomial in the cool? Monethods | alculate diagram = 30 M rehitects gram. pes. R col suit on med comput itted us is x ⁴ +x Mention R with ar | and fark fa | ith extrate | e whice explain ample complete tandar is the | th the | Ma 1 | be is rks 0 5 8 7 8 | CO2 CO1 CO1 CO1 CO2 CO2 | K K K K K K K K K K K K K K K K K K K | | | | Register | Number | 9 | 1 | c | 3 | R | 0 1 | 4 | | | |-------------------------|--|--|-----------------------|--------------------|--|--------------|---------------------|---------|----------|------|--|--| | | VELALAR COLLI | EGE OF ENG | GINEER | RING A | ND T | ECHN | NOL | OGY | | | | | | | (An Autonomous I | nstitution, Aff | filiated to | o Anna | Unive | rsity, | Chen | nai) | | | | | | Con | ntinuous Assessment | Test – II | | QP S | et | 2 | Regulations-2018 v4 | | | | | | | Programme | B.Tech-IT &
B.E(CSE) | Semester: | 5 N | Max. Marks: | | | Duration 1.5 Hrs | | | Irs | | | | Course Code | | Computer N | etworks | | | BUILD ! | | | | | | | | Class: 21CS5A
21IT5A | Dote: 16 11 | 0.23(FN) | | | Tin | ne: 11 | .00 a | m – 12. | .30 pm | | | | | Knowledge | K1 – Remer | mbering | K. | - App | lying | | K5 – Evaluating | | | | | | | Levels (KL) | K2 - Unders | THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT TWIND TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN | | - Anal | Name and Post Of the Owner, where the Post of the Owner, where which is w | | | K6- | Creating | | | | | . What are with it. | e the responsibilities of | Part A – 10
of network lay | | | | cols as | socia | ated | CO3 | K1 | | | | | the advantages of pa | cket switchin | g over c | ircuit sy | vitchi | ng? | | | CO3 | K2 | | | | | tiate IPv4 and IPv6. | | 3 | | | 0 | | | CO3 | K2 | | | | | class of each address. | | | | | | | | CO3 | КЗ | | | | | 0001 100000011 00011 | | | | | | | | | | | | | | outside the organizat
7.91/16. Show how it | | | | | | | | CO3 | K3 | | | | | the services provided | | | | Toute | the pa | LICKEL | | CO4 | K1 | | | | | ongestion. List out th | | | | ies. | | | | CO4 | KI | | | | | you mean by slow st | | | | | | | | CO4 | K2 | | | | | the differences betw | | | | | | | | CO4 | K2 | | | | 0. Mention | the techniques used t | to provide Qu | ality of | Service. | | | | | CO4 | K1 | | | | | | Part B - 2 | x15 = 30 |) Mark | s | | | | | | | | | lo. | | Questions | | | | | | Marks | СО | KL | | | | 1. (a) | Explain about th | e various IPv | 4 addres
OR | sing me | thods | | | 15 | CO3 | K2 | | | | (b) | Consider the ne
path from A to
algorithm and als | o all other | nodes i | n link | state | routi | ng | 15 | CO3 | K2 | | | | | (A | 5
B
2
2
D | 3 (| C) I | 5
F |) | | | | | | | | 2. (a) | Explain in det congestion avoid | lance techniq | the cor | gestion
d in TC | con
P. | itrol | and | 15 | CO4 | 4 K2 | | | | (b) | Analyze the scl
improve QoS wi | OR
heduling and
th respect to | l traffic
delay ar | shapir
nd throu | ng m
ighpu | ethods
t. | s to | 15 | CO | 4 K | | | | | | | | | | | | 1 |) _w | 22 | | | | alle | 122 | PROPERTY AND ADDRESS. | STEEL ST | SERVER! | A Paris | P. C. Star | P. T. S. | 73 | m' | 113 | | | | | | | | | - | | | | Alteria | | | | | | | | |--|------------------|--------|---------------------------|--|---------------------------|---|-----------------|------------------------|-------------------------|--------------------------|---------------------------|-----------------|---------|-------|--------|------| | | | | | | | Register | Num | ber | 9 | 1 | C | 8 | R | 0 | 1 | 4 | | | | VE | LALA | R COLLE | EGE | OF ENG | INEE | RIN | G AN | D TI | ECH | IO | OGY | | | | | | | (A | n Aut | onomous I | nstit | ution, Affi | iliated | to A | nna U | niver | sity, (| Che | nnai) | | | | | | C | ontinu | uous A | ssessment | Tes | t – III | | | QP S | et | 2 | R | Regula | tions | s-2018 | 8 v4 | | Programme B.Tech-IT & Semeste B.E(CSE) | | | | | emester: | 5 | Ma | x. Ma | 50 | D | Duratio 1.5 H | | | Hrs | | | | Cou | irse Cod | e & T | - | 21CST51 | & C | omputer N | etwor | ks | | | | | | | | | | Clas | s: 21CS
21IT5 | | | Date:17.1 | 1.2 | 3(FN) | | | | Tim | e: 11. | .00 | am – 1 | 2.30 |) pm | | | K | nowledg | ge | | K1 – Remembering K3 – Applying | | | | | K5 – Evaluating | | | | | | | | | | | | K2 - Under | K2 - Understanding K4 – Analysing | | | | | | MA | K6 – Creating | | | | | | | ١. | | | | ry purpose internet? | | he DNS p | | | | is it | essen | tial | for the | , | K1 | CO5 | | 2. | | e role | of a ro | oot DNS ser | rver | in the DN: | S hiera | rchy | . How | does | it hel | p to | | | K1 | CO5 | | | | | | enhance S | MT | P? | | | | | | | | | K2 | CO5 | | | | | | erences bet | | | | | | | | | | | K1 | CO5 | | | | | | n layer prot
onitor netw | | | y netv | vork | mana | geme | nt fra | mev | works | | K1 | CO5 | | | | | | onsibilities | | | n Lay | er?. | | | | | | | K1 | COS | | What is the purpose of inverse domain? | | | | | | | | | | K2
K1 | COS | | | | | | | | | | | of HTTP | | ~ | CNIM | 00 | | | | | | | K2 | COS | | 0. | | | | gn of a MIE
se of FTP? | | r a simple | SINIVI | P1 | | | | | | | K2 | COS | | No. | | | | | | art B - 2 | x15 = | 30 N | Iarks | | | 1 | Marks | | СО | KL | | 1. | (a) | (i) | proc | eribe the stress when a vser. | eps
use | involved i
er enters a | n the l | DNS
in na | resoli
me in | a we | b | | 15 | | K2 | CO | | | | | | | | OR | | | | | | | | | | | | | (b) | (i) | | nine the mocol. | essa | ge transfer | using | Sin | iple M | 1ail T | ransfe | er | 8 | | K3 | со | | | | (ii) | Writ | e short note | s on | ; (i) IMAP | (ii) M | IIME | | | | | 7 | | K2 | CO | | 12. | (a) | (i) | Wha | at is the s | igni | ficance of | f HTI | TP m | ethod | ls GI | ET ar | nd | 5 | | K2 | CC | | | | (ii) | and
bein
HTT
and | sider you a
during a s
g able to
rP-related
how wo
oping expe | ale
add
fact
uld | event, cu
items to
ors could
you add | their
be con | rs co
shop
ntrib | ompla
oping
uting | in ab
carts
to thi | out n
s. Wh
is issu | ot
at
ie, | 1 | 0 | K3 | CC | | | (b) | | Sum | marize the operation of | elem | ents of ne | twork | mana | igeme | nt and | l expl | ain | 15 | , | K2 | . C | | | | | the c | peration of | DIV | vii protoco | or in di | | | | | | | | | , | & Tab & G